Magnetization reversal in asymmetric trilayer dots: effect of the interlayer magnetostatic coupling

نویسندگان

  • Zhongjie Yan
  • Xiaolong Fan
  • Zhenghua Li
چکیده

The spin structure and magnetization reversal in Co/insulator/Fe trilayer nanodots are investigated by micromagnetic simulations. The vortex and C-state are found and the magnetization reversal is dominated by the shape asymmetry of the dots, which is produced by cutting off a fraction of the circular dot. The vortex chirality is thus controlled by the magnetic field direction. On the other hand, the magnetostatic interaction between the top and bottom magnetic layers has interesting influence on the dot reversal process, where the magnetocrystalline anisotropy direction of the Co layer is allowed to vary within the layer plane. The combined effect of these two aspects is discussed on the base of dot coercivity, remanent magnetization, vortex nucleation and annihilation, and the bias of the Fe layer hysteresis loop. While leading to a new S-state in circle dots, the interlayer interaction facilitates the formation of C-state in asymmetric dots, which reduces the vortex nucleation field. The bias effect of all dots is decreased with the deviation of the Co layer easy axis from the field direction. Unlike the circle and semicircle dots, the field range of the vortex state in other asymmetric dots increases with the angle between the cutting direction and the Co layer anisotropy. Additionally, vortex ranges in less asymmetric dots even larger than that in the circle dots are evidenced unexpectedly. Therefore, the control of the vortex chirality and enhancement of the vortex range are found simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Switching magnetization by 180° with an electric field.

Magnetoelectric coupling allows for manipulating the magnetization by an external electric field or the electrical polarization by an external magnetic field. Here, we propose a mechanism to electrically induce 180° magnetization switching combining two effects: the magnetoelectric coupling at a multiferroic interface and magnetic interlayer exchange coupling. By means of first-principles metho...

متن کامل

MFM studies of interlayer exchange coupling in Co/Ru/Co films: Effect of Ru layer thickness.

Antiferromagnetically coupled magnetic thin films are promising candidates for the design of new magnetic storage and logic devices. The ability to control the interlayer thickness, therefore the magnetic reversal response, of exchange-coupled magnetic layers is of paramount importance in nanotechnology, especially in magnetic sensing element design and applications. In this work, magnetic forc...

متن کامل

Direct imaging of asymmetric magnetization reversal in exchange-biased Fe/MnPd bilayers by x-ray photoemission electron microscopy.

X-ray photoemission electron microscopy is used to probe the remnant magnetic domain structure in high quality, single-crystalline, exchange-biased Fe/MnPd bilayers. It is found that the induced unidirectional anisotropy strongly affects the overall magnetic domain structure. Real space images of the ferromagnetic domains provide direct evidence for an asymmetric magnetization reversal process ...

متن کامل

Studies of the Magnetization Reversal Processes in Co Dot and Antidot Arrays on a Microscopic Scale

Co dot and antidot arrays with hexagonal symmetry have been prepared by combined electrochemical and sputtering techniques with significantly reduced nanoscale dimensions. Their magnetization reversal process has been analyzed on a macroscopic scale with Vibrating Sample Magnetometry (VSM) and on a microscopic scale by high spatial resolution Magnetic Transmission Soft X-ray Microscopy (MTXM). ...

متن کامل

Magnetism in reduced dimensions Magnétisme en dimensions réduites

We propose a short overview of a few selected issues of magnetism in reduced dimensions, which are the most relevant to set the background for more specialized contributions to the present Special Issue. Magnetic anisotropy in reduced dimensions is discussed, on a theoretical basis, then with experimental reports and views from surface to single-atom anisotropy. Then conventional magnetization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014